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A conventional approach to precision calculations of Higgs boson observables uses

quark masses mc and mb as inputs. However, quark masses are single numbers

that hide a variety of low-energy data from which they are extracted, and also

hide the various sources of theoretical uncertainties and correlations with additional

input parameters such as αs. Higher-precision calculations, which are needed to

give meaning to future measurements, require more direct engagement with the low-

energy data in a global analysis. We present an initial calculation in this direction,

which illustrates the procedure and reveals some of the theory uncertainties that

challenge subpercent determinations of Higgs boson partial widths.
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I. INTRODUCTION

The discovery of the Higgs boson [1, 2] marks the beginning of a new era for precision

studies. Not only is unprecedented precision achieved in Standard Model (SM) calcula-

tions [3–6] with the knowledge of the Higgs boson mass [7, 8], but experimental data on

a large number of Higgs observables [9] allows us for the first time to scrutinize the Higgs

sector of the SM [10] and beyond [11–13]. Any discrepancy between precision data and SM

predictions would be an indication of new physics.

Though not explicitly stated in the context of precision Higgs analysis, an important role

in this program is played by low-energy observables, such as moments of e+e− annihilation

cross section and moments of semileptonic B decay distributions. In fact, our knowledge of

the charm and bottom quark masses mQ (Q = c, b), which are important inputs of precision

Higgs calculations, largely comes from analyzing these low-energy data. This can be seen

from the fact that the Particle Data Group (PDG) [14] average of the scale-invariant masses

in the MS scheme (i.e. solutions to mQ(µ) = µ),

mc(mc) = 1.275(25) GeV, (1)

mb(mb) = 4.18(3) GeV, (2)

is dominated by mQ extractions from low-energy data. These MS masses, as well as pole

masses, have been used in the literature to estimate the theoretical precision achievable in

precision Higgs calculations [10, 15].

However, looking into the future, such indirect engagement of low-energy observables in

precision Higgs analysis might be ultimately unsatisfactory. A large amount of low-energy

data has been highly-processed to yield just two numbers, as in Eqs. (1) and (2). It is not

even clear whether these numbers accurately reflect our knowledge of mQ, because the aver-

aging involves mQ extractions some of which are apparently correlated due to similar data

and/or methods used. The error bars assigned to them contain experimental uncertainties

from many different measurements, as well as theoretical uncertainties from calculating many

different quantities. In addition, a self-described inflation of uncertainties by the PDG [16]

is introduced to account for underestimated systematic errors in some mQ extractions [17].

Finally, Eqs. (1) and (2) do not retain possible correlations between αs(mZ) and the ex-

tracted mQ. They are thus treated as independent inputs in precision Higgs analysis, which
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is strictly speaking not correct.

As we strive for the highest-precision calculation possible in order to match percent (or

even perhaps parts-per-mil) level of experimental precision achievable in the foreseeable

future [18–21], the rich information hidden in Eqs. (1) and (2) should be revealed, and the

role of individual low-energy observables emphasized. Conceivably, a global χ2 fit would

become more powerful in testing the SM when low-energy observables sensitive to mQ as

well as Higgs observables are incorporated. The scale-invariant masses mQ(mQ) would be

then only inputs of the calculation. They are not considered as observables with experimental

values and uncertainties, but are parameters to be tuned to minimize the χ2 function, where

only true observables are included.

In this paper we propose the idea of directly working with low-energy observables in pre-

cision Higgs analysis. In addition to the global fit perspective mentioned above, low-energy

observables can also play a role in identifying individual sources of theoretical uncertainties

in precision Higgs calculations. This is conveniently done by eliminating mQ(mQ) from our

input in favor of two low-energy observables, and recasting Higgs observables in terms of

these and other input observables. For this procedure to be meaningful, the two observ-

ables chosen should be representative of the large amount of low-energy data contributing to

Eqs. (1) and (2), in the sense that mQ extracted from them alone should be precise enough.

In the language of a global χ2 fit, the ideal choices would be two observables that dominate

the low-energy observables contribution to χ2. In this regard, a reasonable, though by no

means exclusive, option would be to use the momentsMc
1 andMb

2 of e+e− → QQ̄ inclusive

cross section, defined by

MQ
n ≡

∫ ds

sn+1
RQ(s), where RQ ≡

σ(e+e− → QQ̄X)

σ(e+e− → µ+µ−)
, (3)

with the precise definition of RQ from experimental data discussed in [22]. mc(mc) and

mb(mb) reported in the literature from analyzing these moments typically have O (10 MeV)

uncertainties quoted [17, 22–24]. For the Higgs observables we will focus on the partial widths

ΓH→cc̄ and ΓH→bb̄, and assess the level of precision we can achieve in SM predictions for them.

We will see that with direct contact made between these partial widths and the low-energy

moments, the vague notion of “uncertainties from mQ” is decomposed into concrete sources

of uncertainties. In particular, parametric uncertainties from input observables Mc
1, Mb

2
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and αs(mZ) 1, and perturbative uncertainties due to missing higher-order corrections to the

moments can be exposed separately. We note that while the parametric uncertainties are

currently expected to be at the percent level, and are in principle reducible with future data

and more careful experimental extraction of the moments, the perturbative uncertainties

may represent a bigger challenge due to lack of knowledge of the appropriate renormalization

scales in the low-energy regime. It is therefore worthwhile to further investigate theoretical

as well as experimental aspects of the low-energy observables for the precision Higgs program

to succeed.

II. INCORPORATING LOW-ENERGY OBSERVABLES INTO A GLOBAL

PRECISION ANALYSIS

The strongest tests of the SM rely on comparing its predictions across all accessible energy

scales. By disentangling the information contained in the charm and bottom quark masses

in the context of precision Higgs analysis, we expose an interesting interplay between Higgs

observables and low-energy observables. The sensitivity to mQ that they share in common

suggests the inclusion of both in the precision program.

An incomplete list of candidates for low-energy observables can be inferred from the

mQ extraction literature, and includes low [17, 22–24] and high [25–28] moments of RQ

mentioned above, and their variants [29, 30], moments of lepton energy and hadron mass

distributions of semileptonic B decay [31–33], etc. We denote them collectively as {Ôlow
i },

with i running from 1 to the number of low-energy observables we wish to incorporate into

the analysis. All these candidates should be carefully examined, and correlations among

them understood, so that the best choices can be made for {Ôlow
i }.

In the high-energy regime, the observables include, for example, various partial widths,

branching ratios, and production cross sections of the Higgs boson. Let us call them {Ôhigh
i }.

1 It should be noted that we will treat αs(mZ) as both a calculational input and an observable with a central

value and uncertainty. In principle one could treat αs(mZ) as merely a calculational parameter and let

the observables that are highly sensitive to αs(mZ) value be part of the global fit, analogous to what

we have done with mQ(mQ). However, αs(mZ) is one step further removed from direct determination of

H → bb̄, cc̄ partial widths compared to mQ(mQ) and so treating αs(mZ) as both input parameter and

(highly-processed) observable is numerically justified.
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If not restricted to precision Higgs analysis, one may even include in {Ôhigh
i } the electroweak

observables, such as the effective weak mixing angle, Z boson partial widths, and forward-

backward asymmetries in e+e− annihilation at the Z pole. This will make the global analysis

even more powerful, because the Higgs observables are sensitive to the same set of input

observables as the electroweak observables:

{Ôin
k } ≡ {mZ , GF , α(mZ), mt, αs(mZ), mH}. (4)

Parenthetically we remark that the common practice of treating the top quark mass mt as

an input observable is justified for present purposes. A more careful treatment of mt, like

what we do here with mc and mb, may be needed in the future when precision measurements

on the tt̄ threshold are carried out at an e+e− collider.

Additional calculational inputs, which are not necessarily of the observable type, include

the charm and bottom quark masses {mQ(mQ)} ≡ {mc(mc),mb(mb)}. There may be other

input parameters, which we denote collectively by {pother
k }. Examples are the τ lepton mass,

flavor angles, and nonperturbative parameters (e.g. gluon condensate) involved in some low-

energy observables.

Assuming the potentially complicated correlations among all the high- and low-energy

observables will be understood in time, we may ultimately subject all the observables to a

global fit, by minimizing the χ2 function with respect to the inputs:

Calculation inputs: {Ik} ≡ {Ôin
k } ∪ {mQ(mQ)} ∪ {pother

k }, (5)

Fit observables: {Ôi} ≡ {Ôin
i } ∪ {Ô

high
i } ∪ {Ôlow

i }, (6)

To minimize: χ2 =
∑
ij

[
Ôth
i ({Ik})− Ôexpt

i

]
V −1
ij

[
Ôth
j ({Ik})− Ôexpt

j

]
. (7)

Here “th” and “expt” denote theoretical and experimental values, respectively, and V is the

covariance matrix containing uncertainties and correlations among observables. The calcu-

lational inputs could just as well be chosen to be a minimal set of Lagrangian parameters;

however, it is most convenient for our purposes to choose a combination of observables and

Lagrangian parameters as the minimal set of calculational inputs. Challenging as it is, such a

global analysis is worth further investigation. As a long-term goal for the precision program,

it will test our understanding of elementary particle physics at unprecedented level.

As a final remark in this section, the techniques described above are to be employed in a

rigorous test of the SM. The resulting statistical test from the χ2 analysis is for determining
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likelihood of compatibility of the data with the SM hypothesis. It is straightforward to

apply these techniques to a slightly different model, which we call the κSM, defined to be

exactly the SM theory except that each coupling of the Higgs boson to SM states has a

free parameter κi in front that is varied to fit the data (see e.g. [11, 34, 35]). In that case,

the χ2 analysis must include these κi as extra input variables and the resulting fit tests

compatibility of the κSM theory with the data, and if compatible, gives confidence intervals

for the κi values. Just as with the SM, at the next level of precision analysis of the κSM it

is important to address the role of low-energy observables that we study in this paper.

III. RECASTING HIGGS OBSERVABLES IN TERMS OF LOW-ENERGY

OBSERVABLES

In order to investigate sources of theoretical uncertainties in calculating the Higgs ob-

servables, it is helpful to recast them in terms of a set of input observables without invoking

a global fit. In the simplest case, suppose all the observables under consideration are in-

sensitive to {pother
k }. We choose two low-energy observables Ôlow

1 , Ôlow
2 . By inverting the

functions

Ôlow
1 = Ôlow

1

[
{Ôin

k }, {mQ(mQ)}
]
, Ôlow

2 = Ôlow
2

[
{Ôin

k }, {mQ(mQ)}
]
, (8)

we express the quark masses in terms of Ôlow
1 , Ôlow

2 :

mc(mc) = mc(mc)
[
{Ôin

k }, Ôlow
1 , Ôlow

2

]
, mb(mb) = mb(mb)

[
{Ôin

k }, Ôlow
1 , Ôlow

2

]
. (9)

{mQ(mQ)} can then be eliminated from the calculation of the Higgs observables:

Ôhigh
i = Ôhigh

i

[
{Ôin

k }, {mQ(mQ)}
]

=
[
{Ôin

k }, Ôlow
1 , Ôlow

2

]
, (10)

and we have achieved the goal of recasting Higgs observables in terms of low-energy input

observables Ôlow
1 , Ôlow

2 . From Eq. (10) it is clear that the precision in the SM prediction for

the Higgs observables will benefit from improved knowledge of mQ, which ultimately comes

from better measurements of the low-energy observables.

Our choices for the low-energy input observables,

Ôlow
1 , Ôlow

2 =Mc
1,Mb

2, (11)
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require only slight generalization of the simple formalism above. We will take into account

an additional input, the gluon condensate, as {pother
k } in the case ofMc

1, but its contribution

allows for a simplified treatment. In fact, the simplicity of the analysis is our main motivation

for choosing these moments as inputs rather than other low-energy observables which lead

to similar level of precision in the extracted mQ. For example, if we were to use semileptonic

B meson decay observables (see e.g. [31–33]), more input parameters in {pother
k } will show

up, including flavor angles and four nonperturbative parameters. Also, the low moments

(MQ
n with n ≤ 4) chosen here are computationally more straightforward than the high

moments (n ≥ 10, see e.g. [25–28]). The former can be calculated conveniently in the

relativistic theory, while a nonrelativistic effective theory treatment is needed for the latter.

In addition, since the calculation involves MS quark masses, there is no need for introducing

other mass schemes. Potentially large uncertainties associated with mass scheme conversion

(e.g. from pole or kinetic masses to MS masses), which is needed for some other methods,

can thus be avoided. We also note that the approach of extracting mQ from the low moments

was recently recast by the lattice QCD community [36–38], and future development in this

direction may shed light on the precision Higgs program [39].

To calculate MQ
n , one applies quark-hadron duality [40] to relate the moments MQ

n to

vector current correlators,

MQ
n =

12π2

n!

(
d

dq2

)n
ΠQ(q2)

∣∣∣∣
q2=0

, where (12)

(q2gµν − qµqν)ΠQ(q2) = −i
∫

d4x eiq·x〈0|Tjµ(x)j†ν(0)|0〉, (13)

with jµ being the electromagnetic current of Q. ΠQ can be calculated as an operator product

expansion (OPE):

MQ
n =

(QQ/(2/3))2

(2mQ(µ))2n

∑
i,j

C̄
(j)
n,i (nf )

(
αs(µ)

π

)i
lnj

mQ(µ)2

µ2
+MQ,np

n , (14)

where QQ is the electric charge of quark Q. As one can see, the values of these moments

depend on the quark masses, the fact that QCD sum rules practitioners use to extract

quark masses (for reviews see [41, 42]). The two terms in Eq. (14) come from perturbation

theory and nonperturbative condensates, respectively. The perturbative part is known up

to O (α3
s) [43], while the gluon condensate contribution, which dominates MQ,np

n , has been

calculated to next-to-leading-order [44]. Note that the coefficients C̄
(j)
n,i are functions of
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nf , the number of active quark flavors. The common choices are nf = 4 for Q = c and

nf = 5 for Q = b. These are also the number of active quark flavors assumed for αs(µ) and

mQ(µ) in Eq. (14). αs(mZ) is defined for nf = 5, and should be matched to the 4-flavor

effective coupling at the bottom quark threshold before being used in Eq. (14) for Mc
n. In

our calculations the matching is done assuming 4.2 GeV for both the threshold scale and

mb(mb), but all the results are found to be insensitive to the details of threshold matching.

mQ(µ) are usually extracted by comparing the theoretical calculation with experimental

data for MQ
n (see [17, 22] for technical details). Normally the lowest moment Mc

1 is taken

for the charm quark so as to suppress the nonperturbative contribution to the subpercent

level [17, 22, 45]. For the bottom quark the gluon condensate can be safely neglected at

the present level of precision [22], and the second moment Mb
2 is preferred due to large

experimental uncertainty in Mb
1. We also neglect O (m2

c/m
2
b) terms in Mb

2, not explicitly

written out in Eq. (14), which constitute a tiny contribution [22].

It is pointed out in [17] that the scales at which mQ and αs are renormalized should be

considered independently to avoid bias in the uncertainty estimate. Eq. (14) then should be

generalized to

MQ
n =

(QQ/(2/3))2

(2mQ(µm))2n

∑
i,a,b

C
(a,b)
n,i (nf )

(
αs(µα)

π

)i
lna

mQ(µm)2

µ2
m

lnb
mQ(µm)2

µ2
α

+MQ,np
n . (15)

The coefficients in this equation C
(a,b)
n,i can be readily derived from C̄

(j)
n,i via renormalization

group (RG) equations, and numerical results for nf = 4 can be found in [17]. Due to unknown

O (α4
s) terms, the calculatedMQ

n exhibit dependence on both µm and µα. Scale dependence

is a general feature of finite-order perturbative calculations, and should be considered with

care in estimating theoretical uncertainties. We have more to say on this below.

With mQ(µm), αs(µα) related to mQ(mQ), αs(mZ) via RG equations, Eq. (15) matches

the general form of Eq. (8), with αs(mZ) being the only relevant element in {Ôin
k }. There

are additional inputs µm, µα and MQ,np
n . So in our case, Eq. (8) is modified as:

Mc
1 = Mc

1

[
αs(mZ),mc(mc), µ

c
m, µ

c
α,M

c,np
1

]
, (16)

Mb
2 = Mb

2

[
αs(mZ),mb(mb), µ

b
m, µ

b
α

]
, (17)

where we have neglectedMb,np
2 . As mentioned above, the nonperturbative contribution has

been claimed to be negligible for the bottom quark. We have checked this in the case of
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Mb
2, where the contribution from Mb,np

2 is below 0.1%, which should be compared to the

experimental uncertainty of Mb
2 of about 1%. Treating Mc,np

1 and mc(mc) as independent

inputs, which we will justify later, and focusing on the Higgs boson partial widths to cc̄ and

bb̄ as examples of {Ôhigh
i }, we have, in place of Eqs. (9) and (10),

mc(mc) = mc(mc)
[
αs(mZ),Mc

1, µ
c
m, µ

c
α,M

c,np
1

]
, (18)

mb(mb) = mb(mb)
[
αs(mZ),Mb

2, µ
b
m, µ

b
α

]
, (19)

ΓH→cc̄ = ΓH→cc̄
[
{Ôin

k },mc(mc), µ
c
H

]
= ΓH→cc̄

[
{Ôin

k },Mc
1, µ

c
m, µ

c
α, µ

c
H ,M

c,np
1

]
, (20)

ΓH→bb̄ = ΓH→bb̄
[
{Ôin

k },mb(mb), µ
b
H

]
= ΓH→bb̄

[
{Ôin

k },Mb
2, µ

b
m, µ

b
α, µ

b
H

]
, (21)

where µcH , µbH collectively denote other renormalization scales involved in the calculation of

the partial widths. These are nevertheless not the only scale dependences for the partial

widths in such analysis. The residual scale dependences of the low-energy observables are

seen to propagate into the extracted quark masses, and constitute part of the uncertainties

in mQ(mQ). These uncertainties eventually propagate into the calculations of Higgs observ-

ables, and are reflected in the µm, µα dependences in Eqs. (20) and (21). Note also that in

the second equalities in Eqs. (20) and (21), the αs(mZ) dependence in the partial widths has

been changed to account for the correlation with mQ(mQ) reflected in Eqs. (18) and (19).

Eqs. (20) and (21) represent the final results of the exercise of recasting Higgs observables

in terms of low-energy observables, with the information contained in mQ(mQ) fully resolved.

They will be used in the next section to investigate the theoretical uncertainties in these

partial widths.

To close this section we remark on the treatment of Mc,np
1 . The known terms read [44]

Mc,np
1 =

〈
αs

π
G2
〉

(2mpole
c )6

[
−16.042− 168.07

αs(µ)

π
+O

(
α2
s

)]
, (22)

where
〈
αs

π
G2
〉

is the gluon condensate. The commonly used value in the context of charm

quark mass extraction is derived from τ decay data [46]:〈
αs
π
G2
〉

= 0.006± 0.012 GeV4. (23)
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In addition to the imprecise knowledge of
〈
αs

π
G2
〉
, we note two other sources of uncertainties

in Mc,np
1 . First, it is argued in [17, 45] that Mc,np

1 should be expressed in terms of the

pole mass rather than the MS mass in order to have a stable αs expansion. We agree

with this argument, but note that the use of pole mass may introduce further ambiguities.

For example, if one tries to calculate the pole mass from the MS mass, the result will be

very sensitive to the loop order. Second, considerable uncertainty is introduced by the

µ dependence of the bracket in Eq. (22), since the O (α2
s) terms are not known. This

renormalization scale is not necessarily related to µα or µm in the perturbation theory

contributions (the first term in Eq. (15)). All these uncertainties and ambiguities will dilute

any conceivable correlation betweenMc,np
1 and mc(mc), justifying our treatment of them as

independent inputs. In our analysis the following value for Mc,np
1 will be assumed:

Mc,np
1 = −0.0001+0.0006

−0.0014 GeV−2. (24)

The central value corresponds to
〈
αs

π
G2
〉

= 0.006 GeV4, mpole
c = 1.7 GeV and µ = 3 GeV

in Eq. (22). The errors are very conservatively estimated by taking the extreme values

mpole
c = 1.4 GeV, µ = 1 GeV, and varying

〈
αs

π
G2
〉

in the range in Eq. (23). Even with the

extreme values considered,Mc,np
1 is still a subpercent-level contribution toMc

1 ∼ 0.2 GeV−2.

IV. THEORETICAL UNCERTAINTIES OF HIGGS PARTIAL WIDTHS

It is clear from Eqs. (20) and (21) that there are two types of uncertainties in the calcu-

lation of the Higgs partial widths. Parametric uncertainty results from imprecise knowledge

of the input parameters, including the input observables (Mc
1, Mb

2 and those in {Ôin
k })

and the nonperturbative parameterMc,np
1 . The experimental values and errors of the input

observables are:

Mc
1 = 0.2121(20)(30) GeV−2 [17], (25)

Mb
2 = 2.819(27)× 10−5 GeV−4 [45], (26)

αs(mZ) = 0.1185(6) [14], (27)

mH = 125.7(4) GeV [14], (28)

mt = 173.21(51)(71) GeV [14], (29)

mZ = 91.1876(21) GeV [14], (30)
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α(mZ) = 1/127.940(14) [14], (31)

GF = 1.1663787(6)× 10−5 GeV−2 [14]. (32)

For Mc
1 and mt the two experimental uncertainties are statistical and systematic, respec-

tively. There is an additional systematic uncertainty inMb
2 associated with the prescriptions

used in extracting moments from data. This is discussed in [45], and we adopt “Option A”

in that paper because among the three options considered there it appears to yield the most

consistent results for mQ(mQ) across different moments.

Perturbative uncertainty, on the other hand, is associated with unknown higher-order

terms in perturbation theory calculations, and leads to residual dependence of calculated

observables on the renormalization scales. When the partial widths are recast in terms of

Mc
1 and Mb

2 as in Eqs. (20) and (21), multiple scales enter. µH comes from the calculation

of the Higgs boson decay, and the associated perturbative uncertainty has been studied in

the literature (see e.g. [10]). Here we focus on µm, µα, which originate from the calculation

of the low-energy observables Mc
1, Mb

2 [see Eqs. (15-17)]. Their contribution to the total

theoretical uncertainty will be singled out below by setting all input parameters to their

central values in Eqs. (24-32), and setting µH = mH .

We study the perturbative uncertainty from µm, µα in two steps. First, mQ(µm) are

calculated by iteratively solving Eq. (15) following the procedure explained in [17], from

which mQ(mQ) are derived. We use the RunDec package [47] for RG running and threshold

matching to the highest loop order implemented in the package. Second, the partial widths

ΓH→cc̄, ΓH→bb̄ are calculated using the expansion formulae in [10]. The results of both steps

are shown in Fig. 1 as contour plots in the µm-µα plane2. They correspond to Eqs. (18-21)

with other inputs fixed. These plots illustrate the propagation of µm, µα dependence from

low-energy moments calculations to Higgs partial widths.

To estimate the perturbative uncertainty, a common practice is to identify a characteristic

scale of the process of interest, and vary the renormalization scale within a factor of two

around that scale. For example, µH has been varied from mH/2 to 2mH in [10]. However,

this method is not directly applicable to µm and µα, since MQ
n receive contributions from

2 The numerical difference between our mc(mc) contour plot and Fig. 6(c) in [17] is due to the input Mc
1

and αs(mZ) used, and to a lesser extent the treatment of Mc,np
1 .
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FIG. 1: Contours of mc(mc) (top-left), mb(mb) (bottom-left) in GeV, and ΓH→cc̄ (top-right), ΓH→bb̄

(bottom-right) in MeV in the µm-µα plane. These plots demonstrate Eqs. (18-21) with all other

inputs fixed. The unlabeled contours represent decreasing values towards the top-left corner in

steps of 0.01 GeV, 0.005 GeV, 0.002 MeV, 0.005 MeV, respectively.

all energy scales as evident in Eq. (3). One might guess from qualitative features of RQ(s)

that the characteristic scale should be O (2mQ), the masses of quarkonium resonances. But

due to the relatively large value of αs in the low-energy regime, the exact number, and hence

the range in which we choose to vary µm, µα can greatly affect the result of our uncertainty

estimates. This is already clear from Fig. 1, where ΓH→cc̄ and ΓH→bb̄ are seen to exhibit
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rapid variation in the low-µm regime.

Lacking an optimal method to estimate the perturbative uncertainty, we refrain from giv-

ing exact numbers, but instead aim to illustrate the ambiguity in the estimate of perturbative

uncertainty by varying µm and µα independently within an adjustable range [µmin, µmax]. We

will focus on the uncertainties in the partial widths, and remark that they are related to the

uncertainties in mQ(mQ) by [10]

∆ΓH→cc̄
ΓH→cc̄

' ∆mc(mc)

10 MeV
× 2.1%,

∆ΓH→bb̄
ΓH→bb̄

' ∆mb(mb)

10 MeV
× 0.56%. (33)

The perturbative uncertainty, defined as half the difference between the maximum and min-

imum values of ΓH→cc̄, ΓH→bb̄, depends on µmin and µmax. We present the results in Fig. 2

in terms of “percent relative uncertainties”, defined to be 100∆Γ/Γ. The red solid curves

show the estimated perturbative uncertainties as functions of µmin, with µcmax (µbmax) fixed

at 4 (15) GeV. Alternative choices for µcmax (µbmax), 3 and 5 (13 and 17) GeV, give rise to

the red dashed curves. These can be compared with the dominant parametric uncertainties

shown by the other curves in Fig. 2 (see figure caption for details). The popular choices in

the literature (µcmin, µ
c
max) = (2, 4) GeV and (µbmin, µ

b
max) = (5, 15) GeV yield perturbative

uncertainties of 1.2% and 0.33% for ΓH→cc̄ and ΓH→bb̄, respectively, comparable with para-

metric uncertainties. However, the perturbative uncertainties increase rapidly and dominate

the total theoretical uncertainties if lower renormalization scales are considered. The result

of the theoretical uncertainty estimate is then strongly dependent on the artificial choice of

µmin. This poses a serious ambiguity in precision analysis, and calls for more enlightened

prescriptions for the uncertainty estimate. We note two possible directions in this regard.

The first direction was suggested very recently in [48] in the context of mQ extraction.

There it is argued that the large perturbative uncertainty from completely uncorrelated

variation of µm and µα is probably an overestimate. To get the perturbative uncertainty

under control, a “convergence test” is performed to identify regions in the µm-µα plane

where the perturbative series converges too slowly (characterized by a large convergence

parameter). These regions are then discarded in the uncertainty estimate. Following the

approach outlined in [48], we find that the discarded regions correspond to the upper-left and

bottom-right corners in each plot in Fig. 1, where mQ(mQ) and the partial widths exhibit

rapid variation. The final result in [48] is a reduced perturbative uncertainty: 14 MeV and

10 MeV for mc(mc) and mb(mb), respectively, corresponding to 2.9% and 0.56% relative
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FIG. 2: Percent relative uncertainties in ΓH→cc̄ (left) and ΓH→bb̄ (right) as functions of µmin

from various sources: perturbative uncertainty with µcmax = 4 GeV, µbmax = 15 GeV (red solid)

or alternatively µcmax = 3, 5 GeV, µbmax = 13, 17 GeV (red dashed), parametric uncertainties

from Mc
1 or Mb

2 (orange), αs(mZ) (cyan solid), Mc,np
1 (blue, for ΓH→cc̄ only) and mH (purple).

The parametric uncertainty from αs(mZ) incorrectly calculated assuming no correlation with mQ

(cyan dotted) is also shown for comparison. The parametric uncertainties are defined as shifts of

the central values of ΓH→cc̄ and ΓH→bb̄ for µmin ≤ µm, µα ≤ µmax caused by varying the input

parameters within the errors quoted in Eqs. (24-32), with µcmax = 4 GeV, µbmax = 15 GeV (the

kinks are due to the maximum or minimum shifting to a different region in the µm-µα plane), and

are found to be insensitive to µmax.

uncertainties in ΓH→cc̄ and ΓH→bb̄, respectively.

The convergence test is a well-motivated idea, reflecting the intuition that a proper scale

choice should not lead to very slow convergence. However, further study is necessary to

examine various details of the approach. For instance, one may consider loosening the con-

straints mc(mc) ≤ µcm, µ
c
α ≤ 4 GeV, mb(mb) ≤ µbm, µ

b
α ≤ 15 GeV imposed in [48]. In

particular, µm, µα slightly lower than mQ(mQ) should be allowed as long as one retains

4-flavor (5-flavor) effective strong coupling for the charm (bottom) quark. Also, the conver-

gence criterion may be refined. The definition of the convergence parameter in [48] assumes

an approximate geometric series behavior of the αs series, but we find the latter falls off

more slowly than a geometric series in most cases. Furthermore, it remains to seek a less

arbitrary prescription for the fraction of (µm, µα) to be discarded, and to investigate whether

the convergence parameter is a good indicator of the size of higher-order corrections. In any
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case, to be conservative the reduced perturbative uncertainties mentioned above should be

interpreted with caution before the approach is developed further.

As an alternative direction, one may consider the possibility of finding an optimal scale

via a defensible scale-setting procedure, such as the one advocated by Brodsky-Lepage-

Mackenzie (BLM) [49]. The BLM scale for an observable is obtained by absorbing the

nf terms in the perturbation series, which come from the QCD beta function, into the

running coupling αs. This is arguably the physical scale of the process, with higher-order

corrections associated with RG running appropriately resummed. We also note that the

BLM procedure extended to all orders based on the principle of maximum conformality [50]

has been demonstrated to be self-consistent [51]. In the case ofMQ
n , however, there are two

renormalized parameters αs and mQ, and naive application of the BLM procedure might be

problematic. This is because even when the nf terms are absorbed into running αs and/or

mQ, the leading-order mass renormalization, which is independent of nf , may lead to large

loop corrections which are difficult to identify. Indeed, we find that naive application of BLM,

namely absorbing the nfα
2
s terms, sets scales for µm and µα which are strongly disfavored

by the convergence test. In light of the importance of a more precise mQ determination, it

might be worthwhile to investigate the nontrivial possibility of generalizing the BLM method

and its extensions [50, 52] to include running quark masses.

The parametric uncertainties, on the other hand, are seen from Fig. 2 to be dominated by

experimental measurement uncertainties of Mc
1 and Mb

2 (orange). Reduction of these will

rely on more precise measurements of RQ(s) and more careful treatment of experimental

data. At present the major problem is the lack of data above
√
s = 11.2 GeV, resulting in

large uncertainties in the bottom quark moments [45]. Also, the quarkonium resonances are

currently treated in the narrow width approximation, the quality of which should be exam-

ined in light of higher precision requirements in the future. αs(mZ) (cyan solid) constitutes a

subdominant source of parametric uncertainties. Its contribution is seen to be smaller than

the incorrect estimate assuming no correlation between αs(mZ) and mQ (cyan dashed), due

to partial cancelation between direct αs(mZ) dependence and indirect dependence through

mQ. With our conservative estimate (i.e., erring on the large side) in Eq. (24),Mc,np
1 leads to

an uncertainty in ΓH→cc̄ (blue) at a similar level as αs(mZ). This may represent a challenge

in the future, and calls for further investigation of the gluon condensate contribution. The
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uncertainty due to mH (purple) is less important, while other input observables listed at the

beginning of this section have negligible effect on the parametric uncertainty.

V. CONCLUSIONS

For the precision Higgs program to succeed in the future, additional effort is required to

improve the precision of SM calculations in order to match the proposed experimental ac-

curacy. A better understanding of theoretical uncertainties is critical. Toward this aim, we

emphasize the role of low-energy observables, and further propose the idea of a global anal-

ysis incorporating relevant observables across all energy regimes. Rather than contributing

indirectly via the charm and bottom quark masses, low-energy observables explicitly par-

ticipate in such a precision analysis. Future studies in this direction should examine all

candidates of low-energy observables, and determine an efficient set of observables for the

global fit.

In the context of precision Higgs calculations, we focused on the Higgs boson partial

widths to charm and bottom quarks, and investigated the theoretical uncertainties in these

observables. By eliminating charm and bottom quark masses in favor of low-energy observ-

ablesMc
1 andMb

2, we recast the partial widths in terms of these and other input observables.

Much information originally hidden in uncertainties in the highly-processed quark masses

becomes transparent. Experimental uncertainties in the low-energy observables are directly

propagated into the Higgs partial widths, and the uncertainty due to αs(mZ) is treated

properly. Perturbative uncertainties are difficult to assess due to the ambiguity in the choice

of renormalization scales in the low-energy regime, and can dominate the total theoreti-

cal uncertainty of the Higgs partial widths if lower values of the renormalization scales are

considered than is usually the case in the literature.

Such analysis points to future directions in the precision program. For the partial widths

considered here, we note that while future experimental progress could potentially reduce

parametric uncertainties significantly, our ability to make precise predictions on the Higgs

partial widths will not improve unless better understanding of the perturbative uncertainty

is achieved. As for Mc
1 and Mb

2 studied here, this might require the calculation of O (α4
s)

corrections to ΠQ(q2) (in the low-q2 limit) and/or more enlightened scale-setting. Though the
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actual situation may be better in a global fit whereMc
1 andMb

2 are not the only low-energy

observables involved, it remains crucial to carefully investigate whether the scale-setting

problem is also present for other low-energy observables sensitive to mQ. If the perturbative

uncertainty gets under control, the precision program, where both low-energy observables

and Higgs observables play an important role, will be promising in studying properties of

the Higgs boson, and even more generally testing the SM across a wide range of energy

scales and probing new physics ideas.
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